Round Table

1) What will the axis of symmetry be for the parabola?

(Hint:
$$x = \frac{-b}{2a}$$
)
 $y = x^2 - 2x + 1$
 $x = 1 \quad b = 2 = 1$
 $x = \frac{2}{2(1)} = \frac{2}{2} = 1$

Axis of Symmetry:

2)Find the Vertex for the equation:

Hint:
$$\left(\frac{-b}{2a}, f\left(\frac{-b}{2a}\right)\right)$$

$$y = x^2 - 2x + 1$$

$$1 - 2x + 1$$

$$1 - 2x + 1$$

$$1 - 2x + 1$$

Vertex: (1,0)

Based on the equation, will the vertex be a maximum or a minimum?

Minimum

2) Algebraically fill in the table below and plot the points to graph the equation. (Include the axis of symmetry as a dashed line)

X	У
-1	4
0	
l	0
2	\$
3	4

4) What is the Domain and Range of the graph?

Domain: R

Range:

5) The path of a ball follows the equation $h(t) = -4.9t^2+30t+3$, where t is the time in the air (in seconds) and h(t) is the height of the ball.

Using your graphing calculator find the vertex:

What is the maximum height that the ball reaches? y_8,qq

How long does it take to reach the maximum height? 3.0 6 Szconds

6) What will the axis of symmetry be for the parabola?

Axis of Symmetry:

7) Use your graphing calculator to fill in the table below and plot the points to graph the equation.

(Include the axis of symmetry as a dashed line)

8) What is the Domain and Range of the graph?

Domain: 120 , X 46.5

Range: 420 4648.99